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This equation, if used with ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-calledzero suppression as an alternative to true deflation.

Muller's method, which was described above, can also be useful at the polishing
stage.
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: Ther®ayeod, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermor
it is not hard to see why (very likely) therever will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously
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The functionsf and g are two arbitrary functions, each of which has zero
contour lines that divide ther, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. Th
solutions that we seek are those points (if any) that are common to the zero contour
of f andg (see Figure 9.6.1). Unfortunately, the functighandg have, in general,
no relation to each other at all! There is nothing special about a common point from
either f’s point of view, or fromg’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common toN unrelated zero-contour hypersurfaces, each of dimergienl. You
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Figure 9.6.1.  Solution of two nonlinear equations in two unknowns. Solid curves refer to f(z,y),
dashed curves to g(x,y). Each equation divides the (z,y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

see that root finding becomes virtually impossible without insight! You will almost
always have to use additional information, specific to your particular problem, to
answer such basic questionsas, “Do | expect auniquesolution?’ and “Approximately
where?” Acton [1] has a good discussion of some of the particular strategies that
can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden's method, is also discussed in §9.7.

A typical problem gives N functional relationsto be zeroed, involving variables
it = 1,2,... N:

E(l’l,l'g,...,,'EN):O 221,27,N (962)

We let x denote the entire vector of values x; and F denote the entire vector of
functions F;. In the neighborhood of x, each of the functions F'; can be expanded
in Taylor series

OF; )
5 0%+ O(6x2). (9.6.3)

N
Fi(x+ 0x) = F;(x) + Z
j=1
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374 Chapter 9.  Root Finding and Nonlinear Sets of Equations

Thematrix of partial derivativesappearingin equation (9.6.3) isthe Jacobian matrix J:

OF;
ij = . 9.6.4
‘]J é)$j ( )
In matrix notation equation (9.6.3) is
F(X + 0x) = F(x) + J - 0x + O(6x?). (9.6.5)

By neglecting terms of order §x? and higher and by setting F(x + §x) = 0, we
obtain a set of linear equations for the corrections §x that move each function closer
to zero simultaneously, namely

J-ox = —F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

Xnew = Xold + 0X (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won't change.

Thefollowingroutinemnewt performsntrial iterationsstarting fromaninitial
guess at the solution vector x of length n variables. Iteration stopsif either the sum
of the magnitudes of the functions F'; islessthan sometolerance tolf, or the sum of
the absolute values of the correctionsto 6z ; islessthan sometolerance tolx. mnewt
calls auser supplied subroutineusrfun which must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun cal the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)

INTEGER n,ntrial,NP

REAL tolf,tolx,x(n)

PARAMETER (NP=15) Up to NP variables.

USES | ubksb, I udcnp, usrfun
Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)

REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)

do 14 k=1,ntrial
call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec

errf=0. and Jacobian matrix in fjac.

dou i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if (errf.le.tolf)return

do12 i=1,n Right-hand side of linear equations.
p(i)=-fvec(i)

enddo 12

call ludcmp(fjac,n,NP,indx,d) Solve linear equations using LU decomposition.
call lubksb(fjac,n,NP,indx,p)
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9.6 Newton-Raphson Method for Nonlinear Systems of Equations 375

errx=0. Check root convergence.
do13 i=1,n Update solution.
errx=errx+abs(p(i))
x(1)=x(1)+p (i)
enddo 13
if (errx.le.tolx)return
enddo 14
return
END

Newton’'s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’t minimization
equivalent to finding azero of an N -dimensional gradient vector, not so different from
zeroingan N-dimensional function? No! Thecomponentsof agradient vector are not
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can aways find a minimum by sliding
downhill on a single surface. The test of “downhillness’ is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensional root,
where*“downhill” must mean simultaneously downhill in N separate function spaces,
thus allowing a multitude of trade-offs, as to how much progressin one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensionsinto one: Add up the sums of squares of theindividual functions
F; to get a master function F' which (i) is positive definite, and (ii) has a global
minimum of zero exactly at all solutions of the origina set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithmsfor finding
minima come to rest on global and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your function F' has a great number of local
minima. In Figure 9.6.1, for example, thereislikely to be alocal minimum wherever
the zero contours of f and g make a close approach to each other. The point labeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F', by
combining it with Newton’s method applied to the full set of functions F';. While
such methods can still occasionaly fail by coming to rest on a local minimum of
F, they often succeed where a direct attack via Newton's method aone fails. The
next section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 14. [1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



376 Chapter 9.  Root Finding and Nonlinear Sets of Equations

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guessis
not sufficiently closeto theroot. A global method is one that convergesto a solution
from almost any starting point. In this section we will develop an algorithm that
combinestherapidlocal convergenceof Newton’s method with aglobally convergent
strategy that will guarantee some progress towards the solution at each iteration.
The agorithmis closely related to the quasi-Newton method of minimization which
we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x)=0 (9.7.1)
is
Xnew = Xold + OX (9.7.2)
where
ox=-J"'.F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
dx? A reasonable strategy is to require that the step decrease |F|? = F - F. Thisis
the same requirement we would impose if we were trying to minimize

f= %F F (9.7.4)

(The % is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but
there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f:

Vf-ox=(F-J)-(-3'F)=-F-F<0 (9.7.5)

Thus our strategy is quite smple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f. If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step isadescent direction for f, we are guaranteed to find an acceptabl e step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizes f by taking Newton steps designed
to bring F to zero. Thisis not equivalent to minimizing f directly by taking Newton
steps designed to bring V f to zero. While the method can still occasionaly fail by
landing on a local minimum of f, thisis quite rare in practice. The routine newt
below will warn you if this happens. The remedy isto try a new starting point.
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